
US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 1 | P a g e

Unit 2 – Output Primitives and their Attributes

Shapes and colors of the objects can be described internally with pixel arrays or

with sets of basic geometric structures, such as straight line segments and polygon

color areas. The scene is then displayed either by loading the pixel arrays into the

frame buffer or by scan converting the basic geometric-structure specifications into

pixel patterns. Typically, graphics programming packages provide functions to

describe a scene in terms of these basic geometric structures, referred to as

output primitives, and to group sets of output primitives into more complex

structures. Each output primitive is specified with input coordinate data and other

information about the way that object is to be displayed. Points and straight line

segments are the simplest geometric components of pictures. Additional output

primitives that can be used to construct a picture include circles and other conic

sections, quadric surfaces, spline curves and surfaces, polygon color areas, and

character strings.

Line Drawing Algorithms:

Line drawing is achieved by calculating intermediate points along a line

path between two specified end point positions. These intermediate points
are calculated from the equation of the line.

The Slope-Intercept Equation of line is:

y = mx + b

where m represents the slope of the line and b represents the intercept

at y-axis.If the two endpoints of the line are (x1, y1) and (x2, y2), the
slope and intercept is calculated as:

m = (y2 – y1)/(x2 – x1)

and b = y1 – m.x1

Algorithms for displaying straight lines are based on these equations and

calculations. For any given x interval x, we can calculate corresponding

y interval y as

 y = m. x

Similarly, we can calculate x corresponding to a specified y as

 x = y/m

For lines with slope value |m| < 1, x is increased and y calculated,

whereas for slopes |m| > 1, y is increased and x calculated.

DDA(Digital Differential Analyser) Line Drawing Algorithm

The DDA algorithm is a line algorithm based on calculating either x or

y.

We know the Slope-Intercept Equation of line is:
y = mx + c

 m = y / x i.e., m = (y2 – y1)/(x2 – x1)

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 2 | P a g e

Case 1: Slope is positive and less than one:

Consider the line with positive slope. If the slope value is less than or
equal to 1 then x = 1 and we have to calculate y value.

 y = m.x

 y = m (since x = 1)

 yk+1 - yk = m

 yk+1 = yk + m (Eq.1)

Here ‘k’ is integer value that starts from 1 and always increases by 1.
Here ‘m’ is float value so we have to round off the ‘y’ value to nearest

integer value.

Case 2: Slope is positive and greater than one:
For slope greater than 1 then y = 1 and we have to calculate x value.

 y = m.x

 x = y / m

x = 1 / m (since y = 1)

 xk+1 - xk = 1 / m

 xk+1 = xk + (1 / m) (Eq. 2)

For negative slope:
For negative slope the above same cases are possible but depends of the

value of x or y we have to either increase or decrease their values.

Summary:

In short, for | m | < 1 we have to increase or decrease the x value by 1

depends on the value of x. If x is positive then we have to increase its

and if x is negative then we have to decrease its value. Then we have to

calculate the value of y based on (Eq. 1). If y is positive then y value

is incremented by ‘m’ and if y is negative then y is decremented by ‘m’.

Similar case is possible for |m| > 1 but here the action of x and y is
interchanged.

Algorithm:

1. Read (x1, y1) and (x2, y2) (First and second coordinate of line)
2. dx = x2 – x1;

dy = y2 – y1;
3. If absolute(dx) > absolute(dy) then

 s = absolute(dx)
 Else

 s = absolute(dy)
End if

4. xinc = dx / s
yinc = dy / s

5. x = x1;

y = y1;

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 3 | P a g e

6. setpixel(round(x), round(y), color)

7. For i = 1 to s
x = x + xinc

y = y + yinc
setpixel(round(x), round(y), color)

End for
8. Exit

Disadvantages:

In DDA line drawing algorithm we have to perform rounding of the float
value and this rounding may cause the line to change from original pixel

position. Also this rounding requires more time. Along with the rounding

operation it also involves the floating-point arithmetic operation, which

also requires more time.

Bresenham’s Line Drawing Method

To remove the drawbacks of DDA algorithm Bresenham has given new
line drawing algorithm based on integer increment/decrement in x and y

value.

Consider the line having positive slope and slope value is less than 1.
First the pixel is plotted at co-ordinates (xk, yk). Then the x value is

always increased by 1 and find out whether the y value is incremented by

1 or not. So the next pixel position is either (xk+1,yk) or (xk+1, yk+1).

From the line equation we get the original y value at xk + 1 as under:

y = m (xk + 1) + b (3.1)

As shown in figure, the distance between yk and y is d1 and distance
between yk + 1 and y is d2.

d1 = y - yk

d1 = m (xk + 1) + b - yk (From eq. (3.1))

yk

y

yk +1

xk +1 xk

d1

d2

Bresenham Line Drawing method

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 4 | P a g e

 and d2 = (yk + 1) – y

d2 = (yk + 1) – m (xk + 1) – b

 d1 – d2 = m (xk + 1) + b - yk - [yk + 1) – m (xk + 1) – b]

 d1 – d2 = 2m (xk + 1) - 2yk + 2b – 1

 d1 – d2 = [2 y (xk + 1) / x] - 2yk + 2b – 1

 x (d1-d2) = 2 y (xk + 1) – 2 x yk + 2 x b – x

 x (d1-d2) = 2 y xk + 2 y - 2 x yk + 2 x b – x

 x (d1-d2) = 2 y xk - 2 x yk + 2 x b – x + 2 y (3.2)

In eq. (3.2) last three terms are constant so we can put some constant b’
in place of them. Also we put x (d1-d2) = pk as decision parameter.

 pk = 2 y xk - 2 x yk + b’ (3.3)

As like eq. (3.3) we can find the value pk+1 as under:

 pk+1 = 2 y xk+1 - 2 x yk+1 + b’ (3.4)

By subtracting eq. (3.3) from (3.4) we get:

 pk+1 - pk = 2 y xk+1 - 2 x yk+1 + b’ - (2 y xk - 2 x yk + b’)

 pk+1 - pk = 2 y (xk+1 - xk) - 2 x (yk+1 - yk)

 pk+1 = pk + 2 y - 2 x (yk+1 - yk) (Since xk+1 = xk+1) (3.5)

Here from eq. (3.5) we can take the decision whether we have to

increase y value or not. If decision parameter p is < 0 then d1 < d2 that
means y is more closer to yk so we have to plot (xk,yk) and if decision

parameter p is > 0 then d1 > d2 that means y is more closer to (yk + 1)

so we have to plot (xk, yk + 1).

Here we are calculating the decision parameter value from previous value
but for initial point we can determine decision parameter by:

 p0 = 2 y - x (3.6)

Here we have only considered the case of positive slope with less than or

equal to 1. Similarly we can derive the equation for the slope greater
than 1 but for that purpose the action of x and y is interchanged.

Algorithm of Bresenham for |m| < 1:

1. Read (x1, y1) and (x2, y2) (First and second coordinate of line)

2. dx = absolute(x2 – x1)
dy = absolute(y2 – y1)

3. p = 2 * dy – dx

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 5 | P a g e

4. if x1 > x2 then

xstart = x2
ystart = y2

xend = x1
yend = y1

else
xstart = x1

ystart = y1
xend = x2

yend = y2
end if

5. setpixel(xstart, ystart, color)
6. Repeat steps 7 to 9 for i = xstart to xend

7. xstart = xstart + 1

8. if p < 0 then
p = p+ 2 * dy

else
if (((y2-y1)/(x2-x1)) > 1) then

p = p+ 2*(dy – dx)
ystart = ystart + 1

 else
p = p+ 2*(dy – dx)

ystart = ystart – 1
end if

endif
9. setpixel(xstart, ystart, color)

10. Exit

Circle Drawing Algorithms:

A circle is defined as the set of points that are all at a distance ‘r’, called the

radius, from a centre position (xc, yc).

Midpoint Circle Drawing Method:

For midpoint method we are using circle function:

f(x,y) = x2 + y2 – r2 (1)

For any point (x,y) we have following three possibilities

So here we are using circle function as decision parameter.

< 0 If (x,y) is inside circle boundary

= 0 If (x,y) is on circle boundary

> 0 If (x,y) is outside circle boundary

f(x, y)

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 6 | P a g e

Suppose we have plot the first point at (xk, yk) coordinate. Now we have

to decide whether the next coordinate is (xk + 1, yk) or (xk + 1, yk –1).

For that we are using decision parameter at midpoint of yk & yk –1.

pk = f (xk + 1, yk – ½)
= (xk + 1) 2 + (yk – ½)2 – r2

= (xk + 1) 2 + yk
2 – yk + ¼ – r2 (2)

If pk < 0 then the midpoint is inside the circle so yk is closer to the circle
boundary so our point is (xk + 1, yk) otherwise the point is (xk + 1, yk –

1). Similarly we have next decision parameter is pk+1.

pk+1 = f (xk+1 + 1, yk+1 – ½)
= ((xk + 1) + 1) 2 + (yk+1 – ½)2 – r2

= (xk + 1) 2 + 2(xk + 1) + 1 + yk+1
2 – yk+1 + ¼ – r2 (3)

pk+1 – pk = 2(xk + 1) + 1 + yk+1
2 – yk+1 – (yk

2 – yk)

 = 2(xk + 1) + (yk+1
2 – yk

2) – (yk+1 – yk) + 1

pk+1 = pk + 2(xk + 1) + (yk+1
2 – yk

2) – (yk+1 – yk) + 1 (4)

If pk < 0 then

yk+1 = yk
pk+1 = pk + 2(xk + 1) + (yk

2 – yk
2) – (yk – yk) + 1

pk+1 = pk + 2xk+1 + 1 (5)

else
yk+1 = yk – 1

pk+1 = pk + 2(xk + 1) + ((yk – 1)2 – yk
2) – ((yk – 1) – yk) + 1

 = pk + 2xk+1 + (-2yk + 2) + 1

= pk + 2xk+1 - 2(yk - 1) + 1

pk+1 = pk + 2xk+1 - 2yk+1 + 1 (6)

yk - 2

yk - 1

xk+2 xk xk+1

yk

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 7 | P a g e

Derivation of initial parameter p0:

Here we have initial coordinate is (0, r) with respect to center coordinate
(0,0). Next point is either (1, r) or (1, r-1). So decision parameter

p0 = f(1, r – ½)

 = 1 + (r – ½)2 – r2
 = 1 + r2 – r + ¼ - r2

 = 1 – r + ¼
 = 5/4 – r (7)

Algorithm:

1. Read centre coordinate (xc, yc) and radius r

2. x = 0

y = r
3. p = 1 – radius

4. Calculate the symmetry points for all the eight octants and add the
centre coordinate (xc, yc) to each calculated point. Then plot that

point.
5. Repeat steps 6 to 8 while x < y

6. x = x + 1
7. if p < 0 then

p = p + 2 * x + 1
else

y = y –1
p = p + 2 * (x – y) + 1

end if
8. Calculate the symmetry points for all the eight octants and add the

centre coordinate (xc, yc) to each calculated point. Then plot that

point.
9. Exit

Filled Area Primitives

A standard output primitive in general graphics packages is a solid-color

or patterned polygon area. Other kinds of area primitives are sometimes
available, but polygons are easier to process since they have linear

boundaries

There are two basic approaches to area filling on raster systems. One

way to fill an area is to determine the overlap intervals for scan lines that
cross the area. Another method for area filling is to start from a given

interior position and paint outward from this point until we encounter the
specified boundary conditions. The scan-line approach is typically used in

general graphics packages to fill polygons, circles, ellipses, and other
simple curves. Fill methods starting from an interior point are useful with

more complex boundaries and in interactive painting systems

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 8 | P a g e

Scan Line Polygon Fill Algorithm

A standard output primitive in general graphics package is a solid color or

patterned polygon area. There are two basic approaches to filling on
raster systems. Determine overlap Intervals for scan lines that cross that

area. Start from a given interior point and paint outward from this point
until we encounter the boundary. The first approach is mostly used in

general graphics packages, however second approach is used in

applications having complex boundaries and interactive painting systems.

For each scan line crossing a polygon is then sorted from left to right, and

the corresponding frame buffer positions between each intersection pair are set to

the specified color. These intersection points are then sorted from left to right ,

and the corresponding frame buffer positions between each intersection pair are

set to specified color.

In the given example, four pixel intersections define stretches from x=10 to x=14

and x=18 to x=24

Some scan-Line intersections at polygon vertices require special handling:

 A scan Line passing through a vertex intersects two polygon edges at that

position, adding two points to the list of intersections for the scan Line

 In the given example , scan Line y intersects five polygon edges and the scan

Line y’ intersects 4 edges although it also passes through a vertex y' correctly

identifies internal pixel spans ,but need some extra processing

The topological difference between scan line y and scan line y’ is identified by

noting the position of the intersecting edges relative to the scan line. For Scan

line y, the two intersecting edges sharing a vertex are on opposite sides of the

scan line. But for scan line y’, the two intersecting edges are both above the scan

line. Thus, the vertices that require additional processing are those that have

connecting edges on opposite sides of scan line.

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 9 | P a g e

We can identify these vertices by tracing around the polygon boundary either in

clock-wise or anti-clockwise order and observing the relative changes in vertex y

coordinates as we move from one edge to the next.

If the endpoint y values of two consecutive edges monotonically increase or

decrease, we need to count the middle vertex as a single intersection point for

any scan line passing through that vertex.

Otherwise, the shared vertex represents a local extremum (min. or max.) on the

polygon boundary, and the two edge intersections with the scan line passing

through that vertex can be added to the intersection list.

One way to resolve this is also to shorten some polygon edges to split those

vertices that should be counted as one intersection. Non horizontal edges around

the polygon boundary in the order specified, either clockwise or anti-clockwise.

When the end point y coordinates of the two edges are increasing, the y value of

the upper endpoint for the current edge is decreased by 1. When the endpoint y

values are monotonically decreasing, we decrease the y coordinate of the upper

endpoint of the edge following the current edge.

Algorithm:

1. Set y to the smallest y coordinate that has an entry in the ET; i.e, y for the

first nonempty bucket.

2. Initialize the AET to be empty.

3. Repeat until the AET and ET are empty:

3.1 Move from ET bucket y to the AET those edges whose y_min = y

(entering edges).

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 10 | P a g e

3.2 Remove from the AET those entries for which y = y_max (edges not

involved in the next scanline), the sort the AET on x (made easier

because ET is presorted).

3.3 Fill in desired pixel values on scanline y by using pairs of x

coordinates from AET.

3.4 Increment y by 1 (to the coordinate of the next scanline).

3.5 For each nonvertical edge remaining in the AET, update x for the new y.

4. Exit

Inside Outside Tests

Area-filling algorithms and other graphics processes need to find inside

regions of objects. Graphics packages normally use either the odd-even

rule or the nonzero winding number to identify interior regions of an

object.

1. Odd-Even Method

In Odd-Even Method, we conceptually draw a line from a position P to a

point outside the region of the object and counting the number of edges

of the object crossing the line. We can find a point outside a polygon, for

example, by picking a point with the x-coordinate smaller than the

smallest x-coordinate of the polygon’s vertices.

If the number of polygon edges crossed by this line is odd, then the point

P is inside the region. Otherwise, P is an exterior point. To get an

accurate edge count, the line path should not cross any endpoint of the

polygon.

Non-zero Winding Number Method

Another method for defining interior regions is the nonzero winding

number method. In this method also we start be imagining a line drawn

from any position P to a point beyond the coordinate region of the object.

The line we choose should not pass through any vertices (end points). We

count the number of edges that cross the line in each direction. We add 1

to the winding number every time we intersect a polygon edge that

crosses the line from right to left or from above the line to below the line

and we subtract 1 every time we intersect an edge that crosses the line

from left to right or from below the line to above the line.

The final value of the winding number, after the entire edge crossings

have been counted, determines the position of P. If the winding number

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 11 | P a g e

is nonzero then the point is inside the region. Otherwise, if winding

number is zero, the point is outside the region.

For standard polygons and other simple shapes, the nonzero winding

number rule and odd-even rule give the same results. But for complicate

set-intersecting polygons, the two methods may give different results,

as given below.

 Odd even rule Non zero winding number rule

Boundary Fill Algorithm

One approach to filling an area is to start at a point inside a region and

fill interior outwards pixel by pixel towards the boundary until boundary

colour is encountered. This method is known as the Boundary Fill

Method.

This method is generally used in interactive painting packages, where

interior points are easily selected. A boundary fill procedure accepts

three parameters - a point inside the region (x, y), the boundary colour

and the filling colour. Starting from (x, y), its neighbouring positions are

tested to determine whether they are of the boundary colour. If not, they

are painted with fill colour, and their neighbouring points are tested. This

process continues until all pixels up to the boundary colour for the area

have been tested.

There are two methods for going to neighbouring pixels from the current

position. For the given point, its neighbouring four points, that is, left,

right, top and bottom, are tested. This method is known as 4-

connected.

Another method to test neighbouring pixel is 8-connected. In this the

four neighbouring points as well as the diagonal points are tested.

4-connected 8-connected

An 8-connected boundary-fill algorithm can fill more complex regions as

compared to 4-connected boundary-fill algorithm.

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 12 | P a g e

Algorithm:

The algorithm for boundary fill using recursion is given by 4-connected

method is given. (x,y) is the point inside the polygon. ‘fillcolour’ is the

colour by which the polygon is to be filled. ‘bordercolour’ is the colour of

the border.

BoundaryFill (x, y, fillcolour, bordercolour)

1. colour = getpixelcolour(x,y)
2. if (colour != bordercolour and colour != fillcolour), then

(a) setpixelcolour (x, y, fillcolour)
(b) BoundaryFill(x+1, y, fillcolour, bordercolour)

(c) BoundaryFill(x–1 , y, fillcolour, bordercolour)
(d) BoundaryFill(x, y+1, fillcolour, bordercolour)

(e) BoundaryFill(x, y–1 , fillcolour, bordercolour)
3. Return

For 8-connected, call the BoundaryFill() function four more times with the

coordinate values of the diagonal points, that is, the right-top (x+1,

y+1), the right-bottom (x+1, y-1), the left-top (x-1, y+1) and the left-

bottom (x-1, y-1).

Recursive boundary-fill algorithm may not fill regions correctly if some

interior pixels are already displayed in fill colour. This occurs because the

algorithm checks neighbouring pixels for boundary colour and for fill

colour. If there is already a pixel with fill colour, the recursive loop w ill

stop and may leave other interior pixels unfilled.

Flood Fill Method

If we want to fill an area whose boundaries have many different colours,

then another approach is followed for filling the polygon. We paint by

replacing a specific interior colour with the fill colour. This method is

known as Flood Fill Method.

We start from a specific interior point (x, y) and reassign the pixels with

current interior colour with the specified fill colour. Using either 4-

connected or 8-connected approach, we pass through pixel positions until

all interior points have been repainted.

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 13 | P a g e

Algorithm:

The algorithm for flood fill using recursion is given by 4-connected

method is given. (x,y) is the point inside the polygon. ‘fillcolour’ is the

colour by which the polygon is to be filled. ‘oldcolour’ is the existing

interior colour.

FloodFill (x, y, fillcolour, oldcolour)

1. colour = getpixelcolour(x,y)
2. if (colour == oldcolour), then

(a) setpixelcolour (x, y, fillcolour)
(b) FloodFill(x+1, y, fillcolour, oldcolour)

(c) FloodFill(x–1 , y, fillcolour, oldcolour)
(d) FloodFill(x, y+1, fillcolour, oldcolour)

(e) FloodFill(x, y–1 , fillcolour, oldcolour)
3. Return

Character Generation

Letters, numbers and other characters can be displayed in a variety of

sizes and styles. The design style for a set of characters is called a

Typeface or Font.

Typefaces or Fonts can be divided into two broad groups: Serif and Sans

Serif. Serif type has small lines at the ends of the main character strokes

(called accents), while Sans Serif does not have accents. Serif type is

generally more readable, that is, it is easier to read in large amount of

texts. On the other hand, the individual characters in sans-serif type are

easier to identify. So, Sans-Serif type is said to be more legible and is

good for labelling and short heading.

Two different methods are used for storing computer fonts:

Bitmap Method or Dot-Matrix Method: In this, the character shapes in

a particular font are represented in form of rectangular grid patterns. The
set of characters are then referred to as a Bitmap Font.

Bitmap fonts are simplest to define and display. The character grid only

needs to be mapped to a frame-buffer position. But bitmap fonts require

more space. It is possible to generate different sizes and other

variations, such as bold, italics, etc., but usually the results are not

good.

Outline Method or Vector Method or Stroke Method: In this method,
the characters are described using straight lines and curve sections. The

set of characters is called an Outline Font.

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 14 | P a g e

Outline fonts require less storage. Different variation or sizes can be

produced by manipulating the curve definitions for character outlines and
the results are also good. But it takes more time to process the outline

fonts.

Attributes

The features or characteristics of an output primitive are known as

Attribute. In other words, any parameter that affects the way a

primitive is to be displayed is known as Attribute. Some attributes, such

as colour and size, are basic characteristics of primitive. Some attributes

control the basic display properties of primitives. For example, lines can

be dotted or dashed, thin or thick. Areas can be filled with one colour or

with multiple colours pattern. Text can appear from left to right, slanted

or vertical.

Line Attributes:

Basic attributes of a straight line are its type, its width, and its colour. In

some graphics packages, line can also be displayed using selected pen or

brush options.

1. Line Type: The line type attribute includes solid lines, dashed lines,

and dotted lines. We modify the line drawing algorithm to generate such

lines by setting the length and space. A dashed line could be displayed by

generating spaces that is equal to length of solid part. A dotted line can

be displayed by generating very short dashes with spacing equal to or

greater than the dash size. Similar methods are used to produce other

line-type variations.

Raster line-algorithms displays line type attribute by plotting pixels. For

various dashed, dotted patterns, the line-drawing algorithms outputs part

of pixels followed by spaces. Plotting dashes with a fixed number of

pixels results in unequal-length dashes for different line angles. For

example, the length of dash diagonally is more than horizontal dash for

same number of pixels. For precision drawings, dash length should

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 15 | P a g e

remain approximately same for any line angle. For this, we can adjust the

pixel number according to line slope.

2. Line Width: A line with more width can be displayed as parallel lines

on a video monitor. In raster lines, a standard width line is generated

with single pixels at each point. Width lines are displayed by plotting

additional pixels along next parallel line paths. For lines with slope less

than 1, we can display thick lines by plotting a vertical length of pixels at

each x position along the line. Similarly, for lines with slope greater than

1, we can plot thick lines with horizontal widths for each point.

The problem with implementing width options using horizontal and

vertical pixel widths is that the width of line is dependent on the slope. A

45-degree line will be displayed thinner as compared to vertical or

horizontal line plotted with same number of pixel widths.

Another problem is that it produces lines whose ends are either

horizontal or vertical. We can adjust the shape of the line ends by adding

Line Caps.

One kind of line cap is the Butt Cap. It is obtained by adjusting the end

positions of lines so that the thick line is displayed with square ends that

are perpendicular to the line. Another line cap is the Round Cap

obtained by adding a filled semicircle to each butt cap. The semicircle has

diameter equal to thickness of line. The third type of line cap is the

Projecting Square Cap. Here, the butt cap is extended to half of line

width.

 (a) (b) (c)

Thick Lines drawn with (a) Butt Cap (b) Round Cap and (c) Projecting Square Cap

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 16 | P a g e

Generating thick connected line segments require other considerations.

The methods that we have considered for displaying thick lines will not

produce smoothly connected line segments. It leaves gaps at the

boundaries between lines of different slope. There are three possible

methods for smoothly joining two line segments. A Miter Join is obtained

by extending the outer boundaries of each of the two lines until they

meet. A Round Join is produced by covering the connection between the

two segments with a circular boundary whose diameter is equal to the

line width. A Bevel Join is generated by displaying the line with butt

caps and filling in the triangular gap where the segments meet.

 Line without Joins Bevel Join

 Miter Join Round Join

3. Pen and Brush Options: In some graphic packages, lines can be

displayed with pen or brush selection. Options in this category include

shape, size and pattern. These shapes are stored in a Pixel Mask that

identifies the pixel positions that are to be set along the line path. Lines

generated with pen or brush shaped can be displayed in various widths

by changing the size of the mask. Lines can also be displayed with

selected patterns.

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 17 | P a g e

4. Line Colour: A system displays a line in the current colour by setting

the colour value in the frame buffer at pixel locations. The number of

colour choices depends on the number of bits available per pixel in the

frame buffer. A line drawn in the background colour is invisible.

Area-Fill Attributes:

Options for filling a region include a choice between a solid colour and a

patterned fill. These options can be applied to polygon regions or regions

with curved boundaries.

Areas can be displayed with various fill styles: hollow, solid, pattern and

hatch.

Hollow areas are displayed using only the boundary outline, with interior

colour the same as the background colour.

A Solid fill is displayed in a single colour including the borders. Fill style

can also be with a specific pattern or design. The Hatch fill is used to fill

area with hatching pattern.

 Hollow Solid Pattern

Polygon fill styles

 Diagonal hatch Diagonal Cross-hatch

Polygon fill using hatch patterns

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 18 | P a g e

Other fill options include specifications for the edge type, edge width and

edge colour. These attributes are same as the line attributes. That is, we

can display polygon edges as dotted, dashed, thick or of different

colours, etc.

Soft Fill

We may want to fill area again due to 2 reasons:

• It is blurred (unclear) when painted first time, or

• It is repainting of a color area that was originally filled with

semitransparent brush, where current color is then mixture of the

brush color and the background color “ behind” the area.

So that the fill color is combined with the background colors are referred

to as Soft-fill.

Character Attributes:

The appearance of displayed characters is controlled by attributes such

as font, size, colour and orientation. Attributes can be set both for entire

character strings and for individual characters, known as Marker symbols.

1. Text Attributes: There are many text options available, such as font,

colour, size, spacing, and orientation.

 Text Style: The characters in a selected font can also be displayed in
various underlining styles (solid, dotted, dashed, double), in bold, in

italics, sshhaaddooww style, etc. Font options can be made available as
predefined sets of grid patterns or as character sets designed with

lines and curves.
 Text Colour: Colour settings for displayed text are stored in the

system attribute list and transferred to the frame buffer by character

loading functions. When a character string is displayed, the current
colour is used to set pixel values in the frame buffer corresponding to

the character shapes and position.
 Text Size: We can adjust text size by changing the overall

dimensions, i.e., width and height, of characters or by changing only
the width. Character size is specified in Points, where 1 point is

0.013837 inch or approximately 1/72 inch. Point measurements specify
the size of the Character Body. Different fonts with the same point

specifications can have different character sizes depending upon the
design of the font.

Character Body

Topline

Capline

Bottomline

Baseline

Character

Height H f q
Descenders

Kern

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 19 | P a g e

The distance between Topline and Bottomline is same for all

characters in a particular size and font, but the width may be different.

A smaller body width is assigned to narrow characters such as i, j, l,

etc. compared to broad characters such as W or M. The Character

Height is the distance between the Baseline and Capline of

characters. Kerned characters, such as f and j, extend beyond the

character-width limits. And letters with descenders, such as g, j, p, q,

extend below the baseline.

The size can be changed in such a way so that the width and spacing of

characters is adjusted to maintain the same text proportions. For

example, doubling the height also doubles the character width and the

spacing between characters. Also, only the width of the characters can

be changes without affecting its height. Similarly, spacing between

characters can be increased without changing height or width of

individual characters.

The effect of different character-height setting, character-width

setting, and character spacing on a text is shown below.

HEIGHT1 WIDTH1 SPACING1

HEIGHT2 WIDTH2 SPA CI NG2

HEIGHT3 WIDTH3 S P A C I N G 3

Effect of changing Height, Width and Spacing

 Text Orientation: The text can be displayed at various angles, known
as orientation. A procedure for orienting text rotates characters so

that the sides of character bodies, from baseline to topline at aligned
at some angle. Character strings can be arranged vertically or

horizontally.

A text orientated by 45 degrees in anticlockwise and clockwise direction

 Text Path: In some applications the character strings are arranged
vertically or horizontally. This is known as Text Path. Text path can be

right, left, up or down.

Orientation

O
rie

nt
at

ion
O

rientation

US05CBCA02 – Computer Graphics Unit - 2

V.P. & R.P.T.P SCIENCE COLLEGE, VV NAGAR 20 | P a g e

A text displayed with the four text-path

options

 Text Alignment: Another attribute for character strings is alignment.
This attribute specifies how text is to be positioned with respect to the

start coordinates. Vertical alignment can be top, cap, half, base and
bottom. Similarly, horizontal alignment can be left, centre and right.

 Alignment values for a string

Compiled By: Mr. Navtej Bhatt, Assistant Professor,
 BCA Department, V.P. & R.P.T.P. Science College, VV Nagar
Class: BCA SEM V

Subject: US05CBCA02 – Computer Graphics

Declaration: This material is developed only for the reference for lectures in the

classrooms. Students are required library reading for more study. This study

material compiled from Book “Computer Graphics by Donald Hearn & M. Pauline

Baker, PHI, 1995

 g

n

i

r

t

s

gn i r t s S t r ing

 s

t

r

i

n

g

TEXT ALIGNMENT
cap

base
bottom

top

half

left center right

